If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2-24=0
a = 7; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·7·(-24)
Δ = 672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{672}=\sqrt{16*42}=\sqrt{16}*\sqrt{42}=4\sqrt{42}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{42}}{2*7}=\frac{0-4\sqrt{42}}{14} =-\frac{4\sqrt{42}}{14} =-\frac{2\sqrt{42}}{7} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{42}}{2*7}=\frac{0+4\sqrt{42}}{14} =\frac{4\sqrt{42}}{14} =\frac{2\sqrt{42}}{7} $
| -19=-7+4v | | 1-7x=3x+10 | | 6x+5=(x+2)+3x-1 | | 8/7=12y | | 1-1x=3x+10 | | 8f-139=-37 | | 33=y/5-2 | | 9(6y+1)= | | 0.02x+450=0.05x | | 9g+39=75 | | m2=4m-1 | | 5/6q=1/6 | | 4v+5=25 | | 18-3x=-2= | | 19x-1+4x+5x-15=180 | | 9-6x=2x+17 | | x^2-7x-160=0 | | 3+x=-24+4x | | 19=-7(3d-9) | | 9x^=6x-1 | | 5a+3=a-7 | | 25y^=9 | | (x-3)/3=7 | | 2x^2-5x=32 | | x/4-11=30 | | 2x-78=x | | 25+2t=5(t+2 | | xx9-201=x2-5 | | w^2=-786 | | 31=x/5+10 | | 18+4y=6y+14 | | 3(2x+3)-4x=-21 |